Connect with us

Planetary Health

How can Data-Driven Agriculture Help Feed a Hungry World?

Published

on

From Bonneville County, Idaho, to Buenos Aires Province, Argentina, tablet-toting agronomists with Anheuser-Busch InBev — the world's largest brewer by volume — are visiting farmers who grow the company's malt barley, a key ingredient in beer. These meetings are a decades-old ritual: Growers review contracts as agronomists offer advice on ways to maximize.

By John Roach

Only these days the conversations are increasingly steered by a computer app called SmartBarley that farmers use to log details on more than 40 variables that affect barley production, such as variety planted, soil type, and tillage method, along with applications of water, fertilizer, and pesticides. Growers use the platform to compare their practices and yields with other farmers who operate in similar soil and climate conditions.

The program is one of many agribusiness-led initiatives to harness the bits and bytes of data that increasingly are being used in agriculture worldwide to boost efficiency and profits, while simultaneously lowering the environmental impact of agriculture. Other agribusinesses that market data-crunching farm-management tools include seed company Monsanto, chemical company DuPont, and precision-irrigation company Valley Irrigation. FarmLink, which leases combines, recently entered the data game with TrueHarvest, a yield comparison tool that leverages data collected by its fleet of farm machinery to help farmers fine-tune their operations to maximize yield and profit.

For now, using big data to improve agricultural productivity is largely centered in the developed world. But sustainable agriculture and development specialists are working to expand access to important agricultural data to the hundreds of millions of small farmers in the developing world. Already, in an effort to improve yields and profits, farmers in places such as sub-Saharan Africa and India are using mobile phones to exchange information about weather, disease, and market prices. And these trends are only expected to grow as information technology spreads. Meanwhile, big data advocates argue that smaller farmers stand to benefit from data-driven agricultural advances, such as improved crop varieties.


We don’t need another smart phone. We need a smarter conversation.  Mobilized is building an empowering constructive solutions-based journalism network from the ground up. While most news is the story of disease and dysfunction, we believe that media can empower, inspire, inform, educate and enable healthier outcomes for us all.

We  are collaborators in creation of better together. 

Stay inspired and Discover how you can get involved with your vision and mission with the Mobilized Network!


At its core, big data in agriculture is about trying to corral the mass of increasingly available information on the environmental, biological, and human factors that govern crop growth and yield in order to provide

Big data will be essential to bring together all the information that a farmer needs.’

farmers with tailored insight on how to grow crops more efficiently. While humans have used accumulated knowledge and technology to grow ever-more food for thousands of years, modern computing power has led to breakthroughs in the ability to collect, exchange, process, and synthesize data in ways that promise to transform agriculture into a sustainable enterprise that meets the projected mid-century food demand of 9 billion people.

But to avoid a massive expansion of agriculture into wetlands and rainforests, to the detriment of biodiversity and the global climate, this yield increase must come on existing farmland. And here, experts say, big data can play a vital role.

“To date, humans have not yet developed agricultural systems that can continue to raise yields and reduce the environmental footprint of agriculture concomitantly,” says Kenneth Cassman, an agronomist at the University of Nebraska. “We have been successful raising yields, or reducing environmental footprint, but not both at the same time, and that is the greatest scientific challenge facing humankind. Big data will be essential to bring together all the information a farmer needs.”

For now, big data is in its infancy, Cassman notes, and current initiatives and products fall well short of their potential. Agribusinesses are primarily developing data services that promote or leverage the products they sell. A seed company, for example, might find in the data an opportunity to sell a drought-tolerant corn variety to a farmer facing increasing irrigation costs. An irrigation company might find an opportunity to sell that farmer a variable-rate pivot, which lowers water usage. The farmer gains from a higher-yielding crop, along with shrinking water and power bills. The environment benefits from water conservation and lower power-sector greenhouse gas emissions.

But the services themselves often are built on proprietary technology that hinders the aggregation and analysis of data flowing from disparate systems. And the quality of data available on everything from weather to soils varies widely, which raises questions about its usefulness.

Neil Palmer/CIAT
A woman harvests crops near Mount Kenya. Experts hope big data could help small farmers adapt as climate change rapidly alters growth conditions around the globe.

What a data-driven sustainable agricultural system is supposed to look like is also under debate. “There is not even agreement that the issue is only about producing more food,” Jane Maland Cady, International Program Director for the McKnight Foundation, says. For example, she notes, several studies suggest plenty of food is already grown to feed the world and that it just needs to be distributed differently. Cady oversees grants made under the foundation’s Collaborative Crop Research Program, which helps small farmers improve yield. “We see data as a means to better understand and make change,” she notes.

According to the United Nations Food and Agriculture Organization, the world must grow 70 percent more food by 2050 to meet global demand. But “the quantum leaps that we enjoyed with the green revolution 50 to 60 years ago are not going to be repeated,” Cassman says. The triad of improved crop genetics, increased use of synthetic products such as fertilizers and pesticides, and expanded irrigation can no longer provide the necessary gains.

“That is why we need big data,” he explains. “An agricultural system is so finely tuned — it’s responding to temperature, water, humidity, diseases, pests, insects, soil, and nutrients in time and space varying across landscapes, and there is just no other way to do it except by bringing together the data needs so that every field can be managed to bring out its best.”

Cassman is a co-principal investigator of the Global Yield Gap Atlas, a project funded by the Bill and Melinda Gates Foundation and other groups. The initiative is harnessing data to identify the gaps between current average farm yields and the potential yield in major crop-growing regions

A multinational initiative is developing software to allow for the flow of agriculture-related information.

around the world. The atlas is a piece of Cassman’s broader vision for a global database populated with publicly available soil, weather, and water data, along with anonymous, farmer-owned and protected data on crop management and yield. When farmers go online and type in their data and geographic location, the database will allow them to compare their management practices and yield against all other similar farms.

“Such a system,” he explains, “would be like having a distillation from hundreds, or thousands, of field experiments to guide future management decisions on each farmer’s field.”

But for the moment, Cassman notes, the road to achieving the vision is a slog. The quantity and quality of the available data is insufficient for farmers to make valid and useful comparisons. And even when the data is created, it is often in a form that is incompatible with data from other sources.

“This widespread incompatibility has left most of the data produced by ag today largely inaccessible, even to the farmer,” Aaron Ault, a senior research engineer with the Open Ag Technologies and Systems Group at Purdue University in Indiana, says. He is the project lead for the Open Ag Data Alliance, a multinational organization that is developing software and standards to allow for the seamless flow of agricultural data. “The biggest hurdle to doing anything with data is simply the handling of it,” he explains. For example, sending an advisor ten years’ worth of yield data is about an-hour-and-a-half job of clicking computer buttons. “There is so much manual intervention necessary to get data from point A to point B that people just don’t do it,” he says.

To overcome data quality concerns, Missouri-based FarmLink controls the aggregation and analysis of the information it uses. In 2011, the combine-leasing company outfitted its fleet with sensors and computers to calculate the yield of every 150 square feet of farmers’ corn and soybean fields. To date, more than a billion records have been collected across 26 states. The data is correlated with 50 variables that affect yield, such as soil type, slope, elevation, sunlight, rain, and temperature. The result is a tool called TrueHarvest, rolled out in 2014, that helps farmers evaluate farm management decisions such as water, fertilizer, and pesticide applications.

The key to the platform’s success, Ron LeMay, FarmLink’s chairman and chief executive officer, says, is quality control. To grow the business, LeMay is considering partnerships with large landowners in South America, where single firms harvest several million acres per year and have years’ worth of proprietary, quality-controlled data about their operations. “With those

One concern is that the data tools will allow industrial-scale farmers to flourish at the expense of small farmers.

sorts of firms,” he says. “You get a lot of breadth and a lot of experience and a lot of carefully controlled circumstances.”

The rub for advocates of small farmers, who grow 70 percent of the world’s food, is that data-driven agriculture is mostly focused on conventional, industrial-scale operations. Overlooked are practices such as organic farming and agroecological intensification, which boosts farmland productivity through improved farm management based on enhanced understanding of how natural systems function. These farming practices are proving to be viable and sustainable means to “increase yields, improve water supplies, rebuild soils, contribute to biodiversity, and raise farmers’ incomes,” Danielle Nierenberg, the president of Food Tank, a Washington-based advocacy, says.

Acquiring local data in the fields where these practices are used is an essential component of programs designed to support and evaluate alternative farming practices. Other programs where agricultural data benefits small farmers include the McKnight Foundation’s Agroecological Intensification Exchange , a Web-based platform open to researchers and farmers to share information. Data exchange via mobile phone, says Nierenberg, “makes huge differences and that is only going to grow.”

One concern is that the big data tools will allow industrial-scale farmers to flourish at the expense of smaller farmers. Flush with fresh capital, larger growers can buy out smaller farmers, accelerating the decades-long trend of farm consolidation. To avoid such a scenario, Nierenberg advocates for the democratization of big data — putting the control and ownership of data into the hands of small farmers first.

Cassman says his envisioned global database applies to organic and small farmers, although the impact is smaller. Each conventional corn grower in the United States, for example, would have between 1,000 and 10,000 similar fields for comparison. An organic farmer might have 10. “How we double yields in the next 35 years is if every farmer has access to what is working under their same conditions every year and in real time during the season,” he says. “I can’t tell you how fast that would accelerate the rate of gain in yields. It works best with lots of farmers, but it could also work with small numbers of farmers.”

With temperatures rising and extreme weather becoming more frequent, the “climate-smart agriculture” campaign is using a host of measures — from new planting practices to improved water management — to keep farmers ahead of the disruptive impacts of climate change.For the SmartBarley program, Anheuser-Busch InBev chose to forgo a larger-scale program in favor of the data verification and working closely with farmers, says John Rogers, the company’s global director of agricultural development. “There is a lot of information out there in the world that someone can take and maybe not fully utilize, or misinterpret, or misunderstand without the technical advice or guidance behind it,” he explains.

However data is used, he adds, it will transform agriculture over the next decade. Anheuser-Busch InBev recently opened what it calls the Bud Lab on the campus of the University of Illinois at Urbana-Champaign, where data scientists are improving algorithms to analyze factors that influence barley production. The plan is to share those insights via the SmartBarley platform with growers.

“Big data is here to stay,” the McKnight Foundation’s Cady says. The key question, she adds, is, “How do we use it?”

Source: Yale University e360

Get Mobilized and Make Love Go Viral!
Continue Reading
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Food

Can the supply chain for the demand for plant-based meat keep up?

Published

on

Demand for evidence-based knowledge is growing.   To bring it to all communities, we must democratize knowledge for the health and well-being of all life.

How do we strengthen ingredient and manufacturing capacity for plant-based meat in order to meet demand? GFI’s new report explores the future of this sector.
Authors: Blake Byrne, Ryan Dowdy, Ph.D.
Https://gfi. Org/wp content/uploads/2021/12/sci21045 science of alt protein january graphics website header featured image website header featured image

Evidence-based, Inspired by Nature, powered by passionate communities, and empowered by imagination.

In 2020, retail sales for plant-based alternatives grew twice as fast as overall food sales in the US. Sales for plant-based meat in particular grew 45 percent. This rising demand is influencing the sector in many ways, including an increasing number of farmers breaking into this “pulsing” category.

In recent years, consumer demand for plant-based meat has often outpaced the industry’s supply chain capabilities. In order to keep pace with the rapidly expanding demand for plant-based meat in the coming decade, the plant-based protein industry will need to make significant investments to expand manufacturing capacity and scale the ingredient supply chain.

The good news is we already have everything we need to enable such a system of systems.

Based on publicly available forecasts of plant-based meat demand and production needs, GFI’s new report, “Plant-based meat: Forecasting ingredient, infrastructure, and investment needs in 2030”, explores a hypothetical production scenario set in 2030, where plant-based meat has captured 6% of the global meat and seafood market, necessitating the production of 25 million metric tons (MMT) of plant-based meat annually.

Opportunities for Communities to take ownership in their stories: Be the Media.

Our analysis identifies a looming potential for global supply squeezes of cornerstone ingredients, like coconut oil and pea protein, in the coming years while also highlighting opportunities for the industry to proactively mitigate these supply strains. We also conservatively estimate that the industry will need to operate at least 800 manufacturing facilities—each producing on average at least 30,000MT of product annually—at a global capital cost of at least $27B within the decade in order to meet a 25MMT production target. This underscores the importance and urgency of incentivizing bold infrastructure investments to facilitate this transition.

Chart: estimated cumulative global capital expenditure in structured plant protein extrusion facilities by 2030.
GFI estimates that the plant-based meat industry collectively must invest at least $27B in capital expenditure into an estimated 810 extrusion facilities globally (each averaging 30,000 MT in annual throughput) to meet a 2030 global production target of 25MMT.

Some of these supply-side constraints are already happening. It is no secret that, in recent years, the plant-based meat industry has been supply, not demand, constrained. Numerous manufacturers are running into difficulties expanding production capacity to meet the needs of restaurants and grocery stores eager to offer novel and sustainable products.

GFI’s mission is to accelerate a transformation in our food system toward alternative protein production platforms as quickly as possible. Encouragingly, several industry analysts and market research reports have projected that this transformation may occur very rapidly. However, the topline projections often understate the real-world challenges of meeting such rapidly growing demand.

Market adoption curves can occur with shocking speed in many sectors, but in the food and agriculture system, transformation entails massive ingredient supply chain and infrastructure implications—not to mention impacts on global commodities markets—that can take time and substantial capital to manifest.

This is not like an app on a smartphone, where—in theory—billions of users can download it nearly instantaneously. This is not even like the conversion from traditional mobile phones to smartphones, where consumers made the switch by virtue of a single purchase of a product containing just a few ounces of material. Sustained transformation of the food system necessitates durable changes in the entire end-to-end supply chain of food production and, of course, lasting shifts in consumer purchasing patterns.
The private sector—investors, ingredient processors, extrusion equipment providers, and manufacturers alike—can realize significant financial upside by appreciating and planning for the enormous plant-based meat supply chain build that must take place in the coming decade. Likewise, governments would be wise to recognize that meaningful climate gains from a scaled shift towards plant-based meat will not be achievable in the near term unless they invest soon in open-access R&D and infrastructure for this burgeoning industry.

Meat made differently

Plant-based meat supply chains have structural efficiency and flexibility advantages over their conventional meat counterparts. Despite these comparative efficiencies, the industry should not underestimate the challenges and opportunities in expanding the plant-based meat supply chain to a scale rivaling that of conventional meat. Our analysis quantitatively demonstrates the enormous manufacturing footprint and level of investment necessary to avoid future supply constraints and successfully hit even modest plant-based meat production targets in 2030.

But our effort doesn’t stop here! Going forward, GFI will add cultivated meat and fermentation-powered proteins reports that answer similar questions about these critical technologies. These forecast reports are critical in ensuring the alternative protein industry can effectively and expediently realize the promise of meat made differently.

Authors: Blake Byrne and Ryan Dowdy, PhD.

Source: Good Food Institute

Get Mobilized and Make Love Go Viral!
Continue Reading

Food

Here’s how Alternative proteins can help us achieve an equitable global water system

Published

on

Water is a finite, indispensable resource that gives way to life as we know it on this planet. It has immense, multidimensional value to individuals and communities around the world. And yet, precious as it is, many of our systems take water for granted.

We have the opportunity to help a new wave of protein production spring forth, one that puts the foods we love on the table while honoring water as a vital resource and paving the way for its conscionable and equitable stewardship.

To reach Sustainable Development Goal 6, “ensuring access to water and sanitation for all,” United Nations member states are working to ensure that all people have access to clean water and sanitation by 2030. Alternative proteins will be a crucial part of the solution.

Enhancing water access 

Alternative proteins allow us to free up our water supply to serve a growing global population.

By only requiring the crops that end up in the final product, plant-based meat production cuts out feed crops, the primary water requirement in conventional meat production. Overall, plant-based meat production requires up to 99 percent less water than its conventional counterparts. Likewise, cultivated meat production is projected to have massive blue water savings (water in freshwater lakes, rivers, and aquifers) with up to a 78 percent reduction as compared to beef production, according to CE Delft’s recent life cycle analysis.

Producing meat directly from plants or by cultivating cells will allow us to free up freshwater from animal agriculture, which is currently responsible for approximately one-third of all freshwater consumption in the world. As our changing climate places greater pressures on food and water security, we must make better use of our limited resources by modernizing meat production systems.

Improving water quality 

According to the United Nations FAO, “global water scarcity is caused not only by the physical scarcity of the resource, but also by the progressive deterioration of water quality in many countries, reducing the quantity of water that is safe to use.” Water pollution does not impact everyone equally: In the United States, contaminated drinking water is 40 percent more likely to occur in places with higher percentages of people of color. By reducing global reliance on animals for meat, alternative proteins can eliminate a major source of waterway pollutants and drive more equitable health outcomes.

Fertilizers used for animal feed crops and improper animal waste management contribute to waterway pollution. Bacteria, fungi, and viruses from manure, as well as antibiotics, hormones, and zoonotic waterborne pathogens can end up in drinking water sources and pollute nearby ecosystems. Fertilizers that runoff into waterways create unsafe levels of nitrogen and phosphorus, which stimulate the growth of algal blooms that suffocate aquatic life (called eutrophication) and devastate marine ecosystems, creating vast dead zones in the Gulf of Mexico, the Chesapeake Bay, and other coastal waters. Harmful algal blooms are estimated to cost the United States $4.6 billion per year.

Because alternative protein production does not involve animal feed or animal waste, it does not contribute to water pollution via harmful agricultural runoff. Studies show that plant-based meat could reduce over 90 percent of eutrophying pollution compared to conventional animal production. Cultivated meat could reduce eutrophying pollution by 98 percent compared to conventional beef. In most countries, alternative protein production facilities will be regulated like any other food production facility, and therefore subject to higher environmental protections than minimally regulated agricultural facilities. These regulations ensure that local waterways will not be contaminated by alternative protein production facilities.

Addressing climate change

By transitioning to alternative proteins, we can mitigate the broader effects of climate change on the water cycle and global water supply. Plant-based meat production uses 47 to 99 percent less land than conventional meat and yields massive reductions in global greenhouse gas emissions. Likewise, cultivated meat outperforms all forms of conventional meat production when renewable energy is used, reducing the climate footprint of beef, pork, and chicken by 92 percent, 52 percent, and 17 percent, respectively.

Global warming land use

Cultivated meat reduces land use up to 95 percent compared to beef, 72 percent compared to pork, and 63 percent compared to chicken. With this massive decrease in land use, we can put policies in place to preserve the forests that regulate global temperatures and play a massive part in controlling the planet’s water cycle.

Unmitigated animal agriculture will have ripple effects on Earth’s climate, escalating the global prevalence of drought and water scarcity. The clearing of trees for grazing and crop land is the greatest driver of deforestation, and deforestation in turn can destabilize the water cycle. Recycling water through land vegetation is especially important in giant tropical ecosystems like the Amazon rainforest, which is thought to provide atmospheric moisture as far as the Midwest. Moreover, as global temperatures rise, droughts become more frequent and more severe; increased temperatures lead to increased evaporation and transpiration.

Alternative proteins pave a brighter road ahead

The challenges presented by our global water crisis are large, but not insurmountable. Reimagining our protein supply to make better use of finite natural resources will be key to restoring water health and access to our global communities. This is precisely the opportunity alternative proteins present.

To modernize meat production, we need public investment in open-access research to fill technological gaps and robust public policies to maximize the benefits of alternative protein production. For example, the Food and Agriculture Organization (FAO) of the United Nations specifically calls for policies and incentives that encourage sustainable diets to counter water pollution from agriculture. Governments should include alternative proteins in public procurement policies for healthy and sustainable food in schools, hospitals, care facilities, and other public institutions. This will increase the availability of alternative proteins and will likely help lower prices, because bulk purchasing by institutions can reduce costs. Additional progressive land, water, and energy policy, as well as a renewed focus on diversity, equity, and inclusion are needed throughout the food system.

Alternative proteins are critical to building a world where water is clean, plentiful, and valued by all—and every stakeholder has a role to play. The Good Food Institute has defined the key challenges facing the alternative protein field and the open opportunities for academic, industry, and government stakeholders to get involved. Read more about the roadmap ahead.

 

Authors

 

Amy Huang UNIVERSITY INNOVATION MANAGER

Amy Huang oversees GFI’s efforts to transform universities into engines for alternative protein research and education. Areas of expertise: university programs, academic ecosystem-building, global health, design thinking, effective altruism, public speaking.

 

Lauren Stone POLICY COORDINATOR

Lauren advances alternative protein policy by researching, writing, and supporting legislative efforts. Areas of expertise: policy communications, food systems, food policy

Source: Good Food Institute

Get Mobilized and Make Love Go Viral!
Continue Reading

Energy and Transportation

The UN climate panel still doesn’t understand technology – and it matters

Published

on

The UN climate panel still doesn’t understand technology – and it matters

Source: RethinkX

With the Sixth Assessment Report of the United Nations Intergovernmental Panel on Climate Change (IPCC) being released, it’s important to revisit the climate scenarios that are its centerpiece. These scenarios form the basis of the climate science community’s modeling and projections, which in turn affects governance and investment decisions across the world. Trillions of dollars and the policymaking of the entire planet thus ride upon these climate scenarios, and so the cost of getting things wrong is extremely high.

Scenarios past and present

The previous generation of climate scenarios published in the Fifth Assessment Report in 2014 were known as Representative Concentration Pathways, or RCPs. The RCP scenarios were labeled according to the amount of radiative forcing expected by the end of the century in each case. Radiative forcing is the scientific term for the change in the balance between the Earth’s incoming and outgoing energy. The Fifth Assessment Report focused on four of these scenarios, with RCP2.6 having the least warming and thus being the “best case”.

In the eight years since then, a new generation of scenarios has been developed for the Sixth Assessment Report, referred to as Shared Socioeconomic Pathways, or SSPs. The five main SSP scenarios are also labeled according to radiative forcing, but in addition each has a subtitle that tells a story about an imagined future:

  • SSP1-1.9 – Sustainability (Taking the Green Road)
  • SSP1-2.6 – Middle of the Road
  • SSP2-4.5 – Regional Rivalry (a Rocky Road)
  • SSP3-7.0 – Inequality (A Road Divided)
  • SSP5-8.5 – Fossil-Fueled Development (Taking the Highway)

Flaws in climate scenarios

A scenario is only as plausible as the assumptions it makes. Unfortunately, the technology assumptions made in both the RCP and SSP scenarios are not remotely plausible, and as a result they are extremely misleading. If there were even one scenario that made genuinely plausible assumptions, then the others could be useful for comparison. But the lack of any properly plausible one means that, taken together, these scenarios will only cause harm by leading decision-makers and the public badly astray.

First and foremost, all RCP and SSP climate scenarios get technology wrong because they fail to understand the forces that drive technological change, how quickly the shift to new technologies occurs, and how quickly old technologies are abandoned as a result.

Our team at RethinkX has shown that the same pattern of disruption has occurred hundreds of times over the last several thousand years. Again and again, for technologies of all kinds – from cars to carpenter’s nails, from arrowheads to automatic braking systems, from insulin to smartphones – we see that technology adoption follows an s-curve over the course of just 10-20 years. The first phase of the s-curve is characterized by accelerating (or “exponential”) growth, which is driven by reinforcing feedback loops that make the new technology increasingly more competitive while at the same time making the old technology increasingly less competitive.

Unfortunately, the RCP and SSP climate scenarios show no sign that their authors understand technology disruption at all. For example, the “best case” RCP2.6 scenario in the Fifth Assessment Report published in 2014 assumed that less than 5% of global primary energy would come from solar, wind, and geothermal energy combined in the year 2100.

Source: Adapted from Van Vuuren et al., 2011, and IPCC, 2014.

In reality, the exponential trend in the growth of solar and wind power had already been clear for over two decades at the time the Fifth Assessment was published in 2014, and the trend since then has only continued – as shown in the chart below.

(Note that the vertical axis of the chart is logarithmic, increasing by a factor of 10 at each major interval, which means the trajectory is exponential).

On their current trajectory, which has been extraordinarily consistent for over 30 years, solar and wind power will exceed the RCP2.6 assumption for the year 2100 before 2030, 70 years ahead of schedule on an 86-year forecasting timeframe.

This is an egregious error that was entirely avoidable. The energy sector has shown every sign of becoming a textbook example of disruption for more than 15 years, and technology theorists were noticing the signs well before 2014. Indeed, Tony Seba – co-founder of RethinkX – had already published an analysis of the energy disruption in his book Solar Trillions in 2010.

Since 2014, the exponential growth of solar power has become common knowledge, as have similar trajectories for batteries and electric vehicles. It is therefore completely inexcusable that the same mistakes have continued in the new SSP scenarios for the Sixth Assessment Report in 2022. The SSP5-8.5 scenario, for example, is titled “Fossil Fueled Development”. Here is its description:

This world places increasing faith in competitive markets, innovation and participatory societies to produce rapid technological progress and development of human capital as the path to sustainable development. Global markets are increasingly integrated. There are also strong investments in health, education, and institutions to enhance human and social capital. At the same time, the push for economic and social development is coupled with the exploitation of abundant fossil fuel resources and the adoption of resource and energy intensive lifestyles around the world.

This logic around “rapid technological progress” is not just wrong, it’s backwards. The faster we make technological progress, the less fossil fuels we will use. The more global markets are integrated and the more human and social capital we have, the faster we will decarbonize.

The SSP3-7.0 scenario contains the same error:

Technology development is high in the high-tech economy and sectors. The globally connected energy sector diversifies, with investments in both carbon-intensive fuels like coal and unconventional oil, but also low-carbon energy sources.

Again, the basic premise here is false. Technological progress will result in less fossil fuel development, not more. The collapse of coal demand is already well underway in the wealthy countries of the Global North, and all fossil fuels in all countries will follow suit as clean technologies rapidly disrupt the energy and transportation sectors over the next two decades.

The SSP2-4.5 scenario assumes that, “The world follows a path in which social, economic, and technological trends do not shift markedly from historical patterns.” But the authors of this scenario do not understand what those historical patterns of technological change actually are.

As our research at RethinkX has shown, the pattern throughout history has been an s-curve of rapid technology adoption over the course of just 20 years or less once new technologies become economically competitive with older ones – as is now the case for clean energy, transportation, and food technologies. The data throughout history simply do not support the assumption that the shift to new, clean technologies will be slow and linear between now and the year 2100.

The SSP1-1.9 scenario, “sustainability”, is allegedly the most sustainable, but this too is based on false assumptions – namely that lower material, resource, and energy intensity are necessary for reducing environmental impacts, and that they are compatible with increasing human prosperity. Neither is true. The solution to environmental impacts is not less energy, transportation, and food. That would be like thinking that if your house is on fire, the solution is to extinguish some of the flames. That’s madness. The solution is to put the fire out, which means switching rapidly and completely to clean energy, transportation, and food.

If we want to be truly sustainable, we must have a superabundance of clean energy, clean transportation, and clean (i.e. non-animal-derived) food that slashes our environmental footprint and gives us the means to restore and protect ecological integrity worldwide. Any attempt to mitigate our ecological footprint by reducing economic prosperity would be disastrous because the scale of cutbacks needed to have any significant effect on sustainability would be utterly catastrophic to the global economy and geopolitical stability.

Projections to 2100… seriously?

It is worth stepping back a moment and recognizing that the RCP and SSP scenarios make quantitative projections to the year 2100. This in itself is flatly preposterous.

Five thousand years ago, you could have made a reasonably accurate prediction about what life would be like 80 years in the future. After all, not much changed from one generation to the next. Your children’s lives were likely to be very similar to your parents’ lives.

Five hundred years ago, in the year 1522, it would have been considerably more difficult to make an accurate prediction about life 80 years hence. The invention of the moveable-type printing press by Johannes Gutenberg 80 years earlier in around 1440 had helped turbocharge the Renaissance, setting the stage for the Scientific Revolution. Life in 1602 was still quite similar to life in 1522, but an explosion in the growth of useful knowledge was laying the groundwork for massive social, economic, political, and technological transformations to come.

A century ago, in 1922, it would have been very hard for anyone to predict with any accuracy what the world 80 years in the future, in 2002, would be like. Nobody could have imagined the role that nuclear weapons or computers or the Internet would play in our lives, for example.

Today, it is absolutely impossible to predict in any detail what the world will be like 80 years from now, around the year 2100. The rate of technological change is so fast now that our team at RethinkX never makes any quantitative forecasts more than 20 years into the future, because to do so is undisciplined in the formal sense. And technological progress is only accelerating.

Although we cannot know what the world will be like in 2100, we can say that it is implausible to presume the conditions and constraints of today will continue to hold. And this is why we can say that all of the RCP and SSP climate scenarios are implausible: they all presume life in 2100 will be more or less the same as today – still governed by material scarcity, regional resource conflicts, food insecurity, demographic transitions, health and education challenges, and even fossil fuel use. None of these makes even the slightest sense in the context of technologies that we fully expect to see from mid-century onward.

So, what happened? Why did the RCP and SSP climate scenarios get technology so wrong?

Anti-technology sentiments in conventional environmental orthodoxy

At least part of the explanation for fundamental errors and misunderstandings around technology we see in the RCP and SSP climate scenarios is that they were developed by a small group of academic authors operating inside an ideological bubble.

One of the features of this ideological orthodoxy is that it holds long-standing anti-technology sentiments dating back over two centuries to the rise of Romanticism and Transcendentalism. On the one hand, the orthodoxy holds that the arc of history ought to be viewed largely through the lens of human behavior and institutions, minimizing or outright rejecting the causal power of technology to shape societies. There even exists a pejorative term, technological determinism, that is used to label and reflexively dismiss any claims that technology has played a key role in steering the course of human affairs across the ages. Yet, at the same time, this orthodoxy holds technology largely to blame for the massive ecological footprint humanity has imposed upon the planet.

It can’t cut both ways. Either technology has enormous causal power, or it doesn’t.

If it does, then that means technology is also the key to transforming our world in positive ways – including achieving genuine sustainability. We don’t see this accurately reflected anywhere in the RCP or SSP climate scenarios because it runs contrary to the anti-technology sentiments of the prevailing orthodoxy.

When you don’t know enough to know you’re being fooled

The climate science community failed to realize the importance of consulting technology experts in the development of climate scenarios. Instead, they made the mistake of relying on conventional forecasts for technologies like solar and wind power from incumbent energy interests such as the International Energy Agency and the U.S. Energy Information Administration. This would be a bit like relying on Blockbuster Video to accurately forecast the future of streaming video, or Kodak to forecast the future of digital cameras, or the American Horse & Buggy Association to forecast the future of automobiles.

The charts below show the laughably poor forecasting track record of the IEA and U.S. EIA.

 

 

Note that the unreliability of these two ‘authoritative’ sources was already clear when the Fifth Assessment Report was published in 2014. Would you depend on advice in a critical situation from someone who had gotten things wrong over and over again?

More cynically, it’s very difficult to see how the IEA or U.S. EIA making the same “errors” year after year for almost two decades could be an honest mistake. At the same time, it’s very easy to imagine that there are powerful incentives for these incumbents to ignore technological change, or even to deliberately troll others about it.

Regardless, trusting the wrong sources and failing to consult actual technology experts was an inexcusable mistake that the climate science community is unfortunately continuing to make.

Predicting the future is hard

The future is obviously uncertain, and the further ahead we look, the blurrier the picture becomes. At first, it might seem reasonable to err on the side of conservativism – after all, if you don’t know exactly how the world will change in the future, isn’t it best just to assume it won’t change much from the present? The answer is no, but the reason why this logic is flawed is rather subtle.

There are dozens of major dimensions and countless minor ones along which change can occur, all of which move us away from our present condition. The fact that these changes are unpredictable does not imply that the noise will somehow cancel out and leave us close to where we started.

By analogy, imagine assembling a complex machine like a car. If you don’t follow the exact steps in the exact order with the exact parts, you aren’t going to end up with a working car. And if you randomize the assembly process, you’re going to end up with a useless pile of junk. This is why tornadoes don’t spontaneously assemble new cars when they pass through a junkyard. The reason why has to do with entropy: there are almost infinitely more ways to incorrectly assemble things than to correctly assemble them.

This analogy helps show why any movement through a large possibility space is only likely to take you away from your current position. This is why the future will be very different from the present, even though those differences are unpredictable.

So, how should we deal with all the uncertainty of the future? The correct response is indeed to construct multiple scenarios that chart the general trajectory and broad outlines of possible futures based on plausible assumptions about what might change between now and then. The trouble with the RCP and SSP climate scenarios, however, is that none of them make plausible assumptions about technological progress.

Refusing to admit past mistakes only feeds conspiracy theories

The climate science community has made very serious technology forecasting errors in its climate scenarios, but has so far refused to acknowledge and take responsibility for them. This is a losing strategy.

Failure to admit and correct the technology forecasting errors in climate scenarios plays right into the hands of conspiracy theorists, because the longer we refuse to admit we’ve made mistakes, the more it looks like they were deliberate. These mistakes are too large to brush under the rug, and so there is no painless option here. We either admit we were fools, or we look like we are liars.

Admitting our mistakes and taking the heat for it is the right move. The alternative only indulges the worst extremist narratives that claim the scientific community has deliberately inflated the threat of climate change and misrepresented our options for solving it in order to advance an agenda of more taxation and more government control over private industry and individual consumer choices.

The public needs to be able to trust the environmental science community, and they can’t do that until we come clean about how wrong we’ve gotten renewable energy and other technologies in our climate scenarios. The longer we pretend nothing happened, the more our legitimacy will erode in the public sphere at a time when trust of scientific authority is already low in the wake of the COVID-19 pandemic.

Getting technology wrong in climate scenarios does real harm

Given the enormous stakes involving trillions of dollars and all of the world’s policymaking, the errors around technology in the RCP and SSP climate scenarios have had serious consequences. They have misled policymakers and the public alike into believing that the only means to solve climate change are punitive – that we must atone for our past environmental sins by sacrificing human prosperity, tightening our belts, and giving up our indulgent personal lifestyles. They have demonized the prosperity of the rich nations of the Global North as unsustainable, and condemned the aspirations of poorer countries of the Global South as unattainable. They have led nations to waste time and resources trying fruitlessly to achieve sustainability through austerity, when this approach is hopelessly counterproductive as I have previously explained.

Austerity cannot solve climate change even in principle, let alone in practice. Prosperity has always been a necessary precondition for solving big problems, both personal and collective, and so it is the only real path to sustainability as well. Technological progress in general will inevitably play an outsized role in bringing the prosperity we need to tackle major challenges to billions worldwide, and specific technologies like solar power and electric vehicles will give us the tools we need to directly reduce emissions and draw down carbon. The IPCC climate scenarios must reflect these facts so that we can all make well-informed decisions about how best to solve climate change together.

Source: RethinkX

Get Mobilized and Make Love Go Viral!
Continue Reading

Food and Land

Are alternative proteins a solution to the agriculture/ crossroads?

Published

on

Agriculture is at a climate crossroads. Alternative proteins are a global solution.

Source: Good Food Initiative

Closeup on field of corn

The math and science are clear.

To have a shot at achieving net-zero emissions by 2050—the universal goal the world needs to hit to avoid the worst impacts of climate change and have a shot at a sustainable future—we must halve emissions by 2030. Alongside transitions in energy and transport, a food system transition is needed to get on that path. Within that food system transition, alternative ways of making meat can chart a new course for agriculture—one defined not only by lower emissions but by greater food security, global health, and resilience.

The world’s climate experts weigh in on food and agriculture

As part of its Sixth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) found that “the extent and magnitude of climate change impacts are larger than estimated in previous assessments.” Some losses due to climate change are already irreversible, while others are approaching irreversibility. In the face of this escalating crisis, mitigation, adaptation, and innovation must go hand in hand. For our food system, that means significantly and quickly reducing the climate impact of agriculture and finding more sustainable, secure, and just ways of feeding billions of people on a rapidly warming planet.

As the IPCC report lays out, agriculture is both a driver and victim of climate change’s ecological, economic, and social impacts. Today, food systems cause approximately a third of all human-generated greenhouse gas emissions. Our current system is heavily reliant on conventional animal agriculture, which alone is responsible for more than half of those emissions. Emissions from conventional animal agriculture not only increase global temperatures but reduce crop yields, contribute to devastating droughts, and cause even greater instability within an already vulnerable and complex global food system and supply chain.

Alternative proteins as a climate solution, with co-benefits for land, water, global health, and food security

Fortunately, we have options available that can transform our food and agricultural system into one that is both sustainable and resilient. Alternative proteins—including meat made from plants and cultivated from animal cells—reduce emissions caused by our current system while also providing a host of environmental benefits. The IPCC’s draft report on climate change mitigation names plant-based and cultivated meat as transformative solutions that, alongside transitions in the energy and transportation sectors, can significantly reduce emissions. The report explains that not only do alternative proteins emit far less greenhouse gasses compared to conventional meat products, they use less land, water, and soil nutrients and result in less pollution. In other words, alternative proteins are a multi-solver: a climate solution with co-benefits.

Globally, more land is dedicated to animal-based food production than any other purpose. Given the forecasts by agricultural economists that show global meat production and consumption more than doubling by 2050, we are headed for what the World Resource Institute describes as the “global land squeeze”—ever-increasing competition over finite land resources driven by agricultural expansion and the rising demand for meat. With business-as-usual meat production, the basic land math doesn’t pencil out: We will be short by approximately 593 million hectares. In addition to reducing direct emissions, changing how we produce meat could free up three billion hectares of land—a land mass larger than China and India combined and then doubled. That land and the livelihoods it supports could be repurposed for regenerative farming, reforestation, renewable energy production, ecosystem recovery, and more.

Conventional animal agriculture is also responsible for about 30 percent of global agricultural water use. Such use impacts both water quantity and quality for communities worldwide. Animal-based food systems lower water tables, dry floodplains, and cause eutrophication in both freshwater and marine ecosystems, which can harm native species and reduce food sources for rural and coastal communities. In the United States, livestock production causes more than half of soil erosion on agricultural lands and a third of the nitrogen and phosphorus pollution in freshwater sources. According to the IPCC, “current food system trajectories are leading to biodiversity loss, land and aquatic ecosystem degradation without delivering food security and nutrition.” If these impacts are not mitigated, the environmental impacts of our agricultural system could increase by 50–90 percent by 2050, reaching levels beyond our planetary boundaries.

Ironically, agriculture-driven climate impacts threaten our ability to continue feeding the world, causing an increasingly problematic feedback loop. Droughts and extreme weather reduce arable land and threaten water supplies, while rising temperatures increase the prevalence of heat stress, infectious disease, and vector-borne disease among livestock. Likewise, marine fisheries are threatened by heat, eutrophication, reduced oxygen, toxic algae blooms, and sedimentation. These impacts on agriculture and global food security will become increasingly severe as climate change progresses. Major shifts in how we produce food are needed quickly if we are to stand a chance in halving emissions by 2030 on the path to a net-zero food future by 2050.

GFI’s expertise and insights in action

We’ve come to the proverbial fork-in-the-road moment of our times, and face a choice: If we are to feed, fuel, and future-proof the planet, do we continue down the business-as-usual road or chart a new path via sustainable agriculture?

Recently, GFI urged the authors of the Fifth National Climate Assessment to consider alternative proteins as a key aspect of sustainable agricultural systems. The National Climate Assessment is a congressionally-mandated report that helps the U.S. government “understand, assess, predict, and respond to” climate change. The purpose of the report is to set forth the current state of the science and potential solutions to help inform policymakers. The Fifth National Climate Assessment is currently being drafted by representatives from several federal agencies including USDA and NOAA.

In its written comment on the zero order draft of the Climate Assessment, GFI details how alternative proteins can transform our agricultural system:

Energy and emissions

Compared to conventional animal products, alternative proteins emit fewer greenhouse gasses. Compared to a quarter pound of conventional beef, the plant-based Beyond Burger generates 85 to 90 percent less greenhouse gas emissions and requires 46 percent less energy. Cultivated meat produced using sustainable renewable energy sources reduces global warming impacts by 17 percent, 52 percent, and 85 to 92 percent compared to conventional chicken, pork, and beef, respectively. By switching from conventional animal products to alternative proteins, we can cut greenhouse gas emissions by about 8 eight metric gigatons per year globally.

In our comments, GFI emphasizes that alternative proteins can both mitigate the impact our agricultural system has on the climate and help the system adapt to better withstand the very real impacts of climate change. In other words, alternative proteins are better for the planet and better for agriculture. Alongside other food system innovations and solutions, they can play a starring role in agriculture’s next chapter around the world.

What’s next?

Through timely actions like these, GFI’s expert policy teams around the world are placing alternative proteins on the agendas of governments and agencies working at the intersection of agriculture, climate, biodiversity, and global health. This summer, look for GFI’s first-ever State of Global Policy Report, a comprehensive overview of government policies and programs that are investing in open-access alternative protein R&D, easing the path to market for novel products, and spurring whole new bioeconomies, jobs, and livelihoods. The report itself will bring much-needed transparency and visibility to how governments around the world are accelerating the transition to far more efficient ways of feeding a growing world.

A full draft of the Fifth National Climate Assessment will be published later this year. Interested stakeholders will have the opportunity to provide comments. If we want federal policies that promote climate-forward agriculture, ensure food security, and protect our planet, it is critical that reports like the Fifth National Climate Assessment reflect the realities of our current agricultural system and highlight the role alternative proteins play as a key solution required for a more sustainable, secure, and just food future.

Authors

 

Madeline Cohen REGULATORY ATTORNEY

Madeline Cohen works on regulatory and policy issues affecting cultivated meat and plant-based foods. Areas of expertise: regulatory landscape, domestic policy, and litigation

Sheila Voss VICE PRESIDENT, COMMUNICATIONS

Sheila Voss oversees GFI’s strategic awareness and action campaigns, data-driven storytelling, and communications-related partnerships. Areas of expertise: plant science and sustainability, agricultural education, biodiversity and climate change messaging.

Shira Fischer POLICY PARALEGAL

Shira provides support to GFI’s policy team to level the regulatory playing field for alternative proteins. Areas of expertise: regulatory processes, policy research, project management

Get Mobilized and Make Love Go Viral!
Continue Reading

Interviews

Translate »